跳到主要內容區塊

國立臺灣大學與中央研究院聯合辦公室

歷年計畫研究成果

研究成果:以高效鈣鈦礦量子點製備之異質接面薄膜鈣鈦礦太陽電池與光伏特性分析

以高效鈣鈦礦量子點製備之異質接面薄膜鈣鈦礦太陽電池與光伏特性分析
Synthesis and Photovoltaic Characterization of Heterojunction Thin-film Perovskite Solar Cells Using Highly Efficient Perovskite Quantum Dots

 

計畫主持人:臺大-化工系 呂宗昕、中研院-應科中心 朱治偉

 

 

  The main goal of this research project is to develop high-efficiency heterojunction solar cells with a target conversion efficiency exceeding 22%. To achieve this goal, PQDs were prepared using a room temperature synthesis method and their photoluminescence (PL) emission spectra were measured with a 460 nm excitation light source. Experimental results show that the emission peak of PQDs is located at 750 nm, confirming that its emission band is within the NIR range. In addition, the synthesized PQDs have a full width at half maximum (FWHM) of 27 nm, a PLQY of approximately 92%, and an average particle size of approximately 8.2 nm. In terms of component manufacturing, current-voltage (J–V) test results show that the PCE of the prepared component reaches 22.32%, the open-circuit voltage (Voc) is 1.11 V, the short-circuit current density (Jsc) is 26.13 mA/cm², and the fill factor (FF) is 76.96%. This performance improvement is mainly attributed to the heterostructure formed by transfer printing technology, which improves the energy band matching between the top layer of perovskite and the bottom layer, further enhancing the charge generation and extraction efficiency. In addition, through external quantum efficiency (EQE) analysis, it was found that the top layer of perovskite can effectively absorb the spectrum in the visible light range, and its absorption capacity is significantly better than that of the bottom layer alone. This result confirms the effectiveness of heterostructure design and transfer.

 

 

  本研究計畫主要目標為開發高效能異質接面太陽能電池,轉換效率超過 22%。為達成此目標,使用室溫合成法製備 PQDs,並以 460 nm 激發光源測量其光致發光(PL)發射光譜。實驗結果顯示PQDs 的發射峰值位於 750 nm,確定其發射波段位於 NIR 範圍內。此外所合成的 PQDs 具有 27 nm 的半高寬(FWHM),PLQY 約為 92%,且顆粒平均尺寸約為 8.2 nm。在元件製造方面,電流-電壓(J–V)測試結果顯示,所製備元件的 PCE 達到 22.32%,開路電壓(Voc)為 1.11 V,短路電流密度(Jsc)為 26.13 mA/cm²,填充因子(FF)為 76.96%。此效能提升主要歸因於轉印技術所形成的異質結構,改善頂層鈣鈦礦與底層的能帶匹配,進一步增強電荷的產生與抽取效率。此外透過外部量子效率(External Quantum Efficiency, EQE)分析,發現頂層鈣鈦礦能有效吸收可見光範圍內的光譜,其吸收能力明顯優於僅有底層的情況。這一結果證實異質結構設計與轉印技術的有效性,可最大化利用太陽光譜提高光電轉換效率。

 

 

Art editor Img