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A B S T R A C T

Background: Magnesium-loaded hydroxyapatite (Mg@HAp) is a potential biomaterial for bone healing appli-
cation but has not been comprehensively synthesized yet.
Methods: In this study, we utilize phosphatidylcholine (PC)-assisted method for synthesizing Mg@HAp with
controllable Mg amount from 1.44 to 10.64 wt%. It is proposed that the negatively charged phosphate func-
tional group of PC could act on cations (i.e. Mg2+ or Ca2+), which provides stable nucleation for the formation
of Mg@HAp.
Significant findings: By optimizing the synthesis conditions, we successfully prepared a Mg@HAp with a rela-
tively low crystallinity which is similar to human bone structure, as evidenced by XRD measurement. The in
vitro test of bone cells (MG-63) shows that the release of Mg2+ ions from Mg@HAp enhances cellular prolifer-
ation and differentiation. We believe the synthesized Mg@HAp would be a promising biomaterial in orthope-
dic applications.

© 2021 Taiwan Institute of Chemical Engineers. Published by Elsevier B.V. All rights reserved.
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1. Introduction

Bone regeneration is a bodily process that occurs after injuries,
such as bone fractures, happen. Eventually, it will make the injured
part indistinguishable from the uninjured part. However, in some
severe cases, including non-union fractures and defects caused by
tumor resection surgery, the bone can no longer recover through the
regeneration process [1,2].

In cases which bone defects are not self-regenerative, methods
involving autologous or allogeneic bone grafts and synthetic bone
substitute materials shall apply [3]. Among these treatments, the syn-
thetic bone substitute is getting more and more popular because it
does not include the donor-site morbidity of autologous bone grafts
and the risk of rejection of allogeneic bone grafts. Furthermore, syn-
thetic bone substitutes can be classified into non-biodegradable
materials and biodegradable materials. A well-known example of
non-biodegradable materials is poly (methyl methacrylate) (PMMA),
also known as bone cement [4,5]. Biodegradable materials, for
instance, inorganic ceramics, e.g. Calcium Phosphate (CaP), is one of
the most popular research topics [6,7]. Although CaP does not possess
osteoinduction capacity, they certainly have bone conduction capac-
ity and significant ability to directly bind to the bone [8]. To make
CaP a better bone repairing material, studies have utilized organic
and inorganic substances to modify the properties of CaP [9,10]. On
the other hand, how these modifications affect the phase transition
of CaP is also attracting interest [11].

Currently, the most commonly used CaP in clinics are hydroxyap-
atite (HAp) and biphasic cement, which are usually mixtures of HAp
and b-tricalcium phosphate (b-TCP) [12,13]. Among those, HAp is
thermodynamically the most stable crystalline phase. Combinations
of tough polymer and HAp have been applied to mimic the organic-
inorganic composition of natural bone. The most significant organic
component in the bone structure is collagen, which promotes the
production of nanosized crystals of CaP aligned in the cortical bone
[14]. Nonetheless, how the highly ordered structure is formed from
the combination of organic and inorganic molecules is still unclear
[15�17]. Additionally, the inorganic component of the natural bone
is nonstoichiometric apatite which is low crystalline and contains
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Scheme 1. Illustration of the lipid-assisted synthesis of Mg@HAp and its bone healing application. Where the phospholipid acts as a template for the Mg@HAp. The resulting struc-
ture of Mg@HAp from this process will be bone-liked mesocrystals. The incorporated Mg ions in Mg@HAp can be released and further uptake by the bone cells.
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cationic and anionic substitution [18]. Properties of synthetic HAp
such as degradation rate, bioactivity, and mechanical strength can be
controlled through anionic or cationic substitutions as well [19,20].

Magnesium (Mg), the most abundant cationic substitution in nat-
ural bone, is crucial for bone health [21,22]. Approximately 50�60%
of Mg is stored in the bone matrix of the human body, acting as sur-
face substituents of the HAp mineral component of bone [23]. More-
over, Mg ions can increase the adhesion, growth, and alkaline
phosphatase (ALP) activity of osteoblasts and bone mesenchymal
stem cells (BMSCs), resulting in promoting the differentiation and
enhancing bone formation and integration with host bone [24,25].
The synthetic method of incorporating magnesium ions into HAp lat-
tice has been widely studied. Nonetheless, the maximum amount of
Mg incorporated in synthetic HAp has been limited since Mg acts as
an inhibitor in the crystallization process of calcium phosphate and
destabilizes the structure of HAp [26�28]. Beside, the high hydration
energy of Mg makes the preparation of high Mg-content minerals dif-
ficult in aqueous solution and at physiological temperature [29],
unless paired anionic substitutions such as carbonate or fluoride are
simultaneously incorporated with Magnesium ions. Ren et al. synthe-
sized Mg-doped HAp by the wet-chemical precipitation method at
90 °C with the percentage of Mg substitution (Mg / (Mg + Ca)) in HAp
between 5 and 7 mol% [30]. Liangzhi et al. managed to synthesize
Mg-substituted HAp whiskers by hydrothermal method with acet-
amide as a homogeneous precipitation reagent [24]. The molar ratio
of Mg / (Mg + Ca) could be facilely changed from 1.61 to 6.14 mol%.
Cacciotti et al. reported Mg substituted HAp nanopowders, whose Mg
content ranged between 0.6 and 2.4 wt% [31]. Landi et al. used the
wet-chemical method to synthesize Mg-doped HAp with up to
3.2 wt% of Mg [21]. According to these researches, there are some
effects for HAp properties by increasing the content of Mg in HAp: (i)
the crystallinity decreasing, (ii) the incorporation of HPO4

2� increas-
ing, and (iii) the extent of dissolution increasing [32,33].

The preparation method of HAp can be divided into the wet
method, the dry method, the high-temperature method, and the
combination of these methods. The wet method is the most universal
one because it provides accurate control of morphology and the size
of the particles in small batch production. By modifying the wet syn-
thesis method, we can mimic biomineralization to create a structure
that is similar to bioapatite. Feng et al. used liposomes to synthesize
HAp [34,35]. They concluded that the vesicle membrane of phospho-
lipids plays an essential role in the mineralization of calcium phos-
phate. These lipid-assisted synthesized HAp have a chemical
composition similar to natural HAp. Huang et al. also observed that
lipid-bonded HAp has higher biocompatibility and is beneficial to
therapy of bone disease and applications [36]. Although the synthesis
of HAp by using liposome as a model has been investigated, there is
no study on the substitution of Mg ions in the lattice of HAp in a
lipid-assisted system.

Phosphatidylcholine(PC) is one of the phospholipids which com-
poses most of the biological membrane [37]. It consists of a zwitterionic
head, a phosphate group, and two non-polar fatty acid chain tails [38].
Phosphatidylcholine can be classified into zwitterionic surfactant, which
would have the negatively charged lipid phosphate functional group to
interact with Ca and Mg ions [39�41]. Yu et al. prepared mesocrystals
of high-magnesian calcite in lipid solution [42]. Therefore, it is conceiv-
able that the surface of the lipid membrane is involved in the nucle-
ation of Mg-loaded HAp (Mg@HAp) particles.

In this work, we aim to synthesize Mg@HAp powders with con-
trollable Mg contents which possess bioactivity, biocompatibility,
osteoconductivity, and bioresorbability as potential bone healing
material (Scheme 1)
2. Materials and methods

2.1. Materials

Calcium chloride (�97%), Magnesium chloride (�98%), Ammo-
nium phosphate dibasic (�98%), L-a-Phosphatidylcholine from soy-
bean, Type IV-S, Enzymatic (�30%), Sodium hydroxide (�97.0%),
Potassium bromide (�99.0%), Dimethyl sulfoxide (�99.7%), Thiazolyl
Blue Tetrazolium Bromide (98%), TritonTM X-100, 2-Amino-2-methyl-
1-propanol (�99.0%), 4-Nitrophenyl phosphate disodium salt hexa-
hydrate (pNPP), Tris-Buffer and 4-Nitrophenol (p-NP) were pur-
chased from Sigma Aldrich. Magnesium chloride hexahydrate (99%)
was purchased from J.T. Baker. Ethyl Acetate (�99.5%), Hydrochloric
acid (37%), and Nitric acid (�69%) were purchased from Honeywell.
Dulbecco's Phosphate Buffered Saline (10X), Penicillin-Streptomycin-
Amphotericin B Solution, and Trypsin-EDTA (10X) were purchased
from Biological Industry. Minimum Essential Medium alpha (MEM-
a), Fetal bovine serum (FBS), and Trypan blue stain were purchased
from Gibco.

All chemicals were used directly after being received without fur-
ther purification.
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2.2. Synthesis of Mg@HAp

Ammonium phosphate dibasic (0.12 M) was added to a 250 mL
serum bottle and dissolved by 125 mL of deionized (DI) water while
stirred by a magnetic stirrer. Calcium chloride (x M) and magnesium
chloride (y M) were added to another 250 mL round-bottom flask
and dissolved by 125 mL of deionized water while stirred by a mag-
netic stirrer. The total concentration of calcium chloride and magne-
sium chloride is 0.12 M (x + y = 0.12). The pH values of the two
solutions were adjusted to 9.00 by 1 M NaOH or 1 M HCl, respec-
tively. Then, magnesium/calcium solution was dropwise added into
ammonium phosphate dibasic solution about 2 mL per minute. The
mixture was stirred for 15 min before aged in a 37 °C water bath.
After 5 to 19 h of aging, the precipitate was collected by centrifuga-
tion at 20,000 g for 5 min. The resulting solid was washed with deion-
ized water 5 times. The purified solid was dried by the lyophilizer for
at least 24 h. The sample label and the parameters of Ca/Mg concen-
tration were shown in Table 1. The scheme of the typical process was
shown in the supporting information S3.
2.3. Synthesis of Mg@HAp-PC

A lipid thin film was prepared by dissolving 4.5 mmol of L-
a-phosphatidylcholine (PC) in 30 mL of ethyl acetate (EA) followed
by 15 min of sonication. The mixture was placed in a 500 mL round
bottom flask and followed by rotary evaporation at 100 rpm, 40 °C
for 10 min. The solution of 125 mL of calcium chloride (x M) and mag-
nesium chloride (y M) at pH 9.00 was mixed with the PC film. The
total concentration of calcium and magnesium ions is 0.12 M (x+ y=
0.12). After the solution mixture was sonicated for 20 min and
adjusted to pH 9.00 again, 125 mL of ammonium phosphate dibasic
solution (0.12 M, pH 9.00) was dropwise added into it with 2 mL/min
and stirred for 15 min. The solution was incubated under quiescence
and physiological temperature at 37 °C for 5 to 19 h in water bath.
After aging, the final pH value was in the range of 7.0�7.6. After an
addition of 10 mL of EA to the solution mixture, the calcium phos-
phate precipitate was collected by centrifugation (20,000 g for
5 min). Additional 10 mL deionized water and 10 mL EA were added
to wash the solid for 5 times. The sample label and the parameters of
Ca/Mg concentration were shown in Table 2. The scheme of the typi-
cal process was shown in the supporting information S4.
Table 2
The sample label and the synthesis parameters for Mg@HAp-PC.

Sample Concentration
of Ca2+ (M)

Concentration
of Mg2+ (M)

Amount of
Phosphatidylcholine
(mmol)

HAp-PC 0.12 0 4.5
Mg@HAp-PC (Ca/Mg = 10) 0.109 0.0109 4.5
Mg@HAp-PC (Ca/Mg = 5) 0.1 0.02 4.5
Mg@HAp-PC (Ca/Mg = 1) 0.06 0.06 4.5
Mg@HAp-1.5PC (Ca/Mg = 5) 0.1 0.02 6.75

Table 1
The sample label and the synthesis parameters for Mg@HAp.

Sample Concentration of Ca2+ (M) Concentration of Mg2+ (M)

HAp 0.12 0
Mg@HAp (Ca/Mg = 10) 0.109 0.0109
Mg@HAp (Ca/Mg = 5) 0.1 0.02
Mg@HAp (Ca/Mg = 1) 0.06 0.06
2.4. Characterization of the materials

Powder X-ray diffraction (PXRD) was performed on Rigaku Mini-
Flex or Rigaku Ultima IV with Cu Ka radiation (λ = 1.5418 A

�
) to iden-

tify the crystal structure of Mg@HAp.
The field emission scanning electron microscope images were

taken with Hitachi S-4800. All the samples were taped on the carbon
conductive tape then kept under vacuum to remove the moisture
content, followed by sputtering of Pt coating.

Element analysis was conducted with Agilent 7700e ICP-MS. All
the samples were digested in aqua regia (0.5 mg/mL) and further
diluted to 1000 ppb by 2 wt% nitric acid. The digested samples were
filtered by 0.22 mm nylon syringe filters before being injected into
the instrument. The calibration curves were built by preparing mag-
nesium, calcium, and phosphorus standard solution of 0, 62.5, 125,
250, 500, and 1000 ppb.

The high-resolution transmission electron microscope images
were taken with JEOL JEM-2010. Each powder sample was suspended
in ethanol (0.02 mg/mL) and sonicated for 30 min. 10 mL of the sus-
pensions were dropped onto the copper grids and dried at 80 °C. The
copper grids were then freeze-dried for at least 24 h.

Fourier-transform infrared (FTIR) spectra were measured with
Perkin Elmer Spectrum 100 at a resolution of 4 cm�1. The spectra
were detected over the range of 4000�450 cm�1. Samples for FTIR
measurement were prepared by mixing vacuum-dried powders with
potassium bromide (KBr) by an appropriate ratio (KBr / sample < 1 /
100, w / w) and pressing into translucent discs.

X-ray photoelectron spectroscopy (XPS) was performed with
Thermo Scientific Theta Probe Angle-Resolved XPS System to identify
the oxidation states of magnesium and oxygen. Before measurement,
the spectra were calibrated with reference to C1s at a binding energy
of 284.5 eV.

Zeta potentials of samples were measured with Malvern Zetasizer
Nano. Samples were dispersed in deionized water (0.1 mg / mL) and
sonicated for 1 h before being measured. The pH value of all suspen-
sions was neutral (7.00 § 0.80) All the measurements were repeated
3 times at 25 °C

The degradation rates of the samples were tested. 50 mg (Wi) of
samples were soaked in 10 mL of PBS for 1, 2, 3, and 4 weeks respec-
tively. The temperature was controlled at 37 °C by a thermostatic
water bath. At the predetermined time, the mixtures were centri-
fuged at 4000 g for 10 min to remove the supernatants. Next, precipi-
tated pellets were washed with 10 mL of deionized water and freeze-
dried for 24 h. The dry samples were weighed (Wf) to calculated the
degradation rates using the following equation:

Degradation % = (Wi - Wf) / Wi £ 100.
The degradation rate was recorded as mean § standard deviation

for n = 3.

2.5. Cell culture

Human osteoblast-like cell line MG-63 was used to evaluate the
biocompatibility and proliferation-promoting properties of Mg@HAp
particles. MG-63 was cultured in T75 flasks with 10 mL Minimum
Essential Medium a (MEM-a) containing 10% Fetal bovine serum
(FBS) and 1 % Pen-Strep-Ampho.B (P/S/A). The cells were incubated at
37 °C under 5 % of CO2 in air and subcultured every 3 to 5 days.

2.6. MTT assay

MTT assay was performed to determine the viability and prolifer-
ation of MG-63 cells. The mitochondria are the most sensitive organ-
elles in the cell to environmental factors, so their physiological status
can represent the whole cell's physiological state. The mitochondrial
succinate dehydrogenases of living cells convert the yellow water-
soluble MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium
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bromide) dye into purple insoluble formazan [43]. After dissolving
the formazan in DMSO, the absorbance at 570 nm can be used to
determine the activity of the mitochondria, the viability of cells. So,
this method can be used to evaluate the compatibility of biomaterials for
cell lines. The following is the typical procedure of MTT Assay and the
preparation of the reagents is provided in supporting information S.1.

(1) 100 mL of MG-63 cell suspension (1 £ 105 cells/mL) was trans-
ferred into each well of a 96-well cell culture plate. The cells
were incubated at 37 °C for 24 h in a humidified atmosphere
containing 5 % CO2.

(2) Culture medium was replaced with 100 mL of materials for the
concentration: 0 mg/mL (control group), 0.1 mg/mL, 1 mg/mL.

(3) Incubated cells for 1, 3, 5, 7, and 14 days, separately.
(4) The culture medium was aspirated from the plates and the cells

were washed with PBS twice. 100 mL of the MTT solution was
added to each well and the plate was further incubated for 3 h at
37 °C.

(5) MTT solution was replaced with 100 mL of DMSO. The plate was
incubated at room temperature for 10 min and subsequently
subjected to an ELISA reader equipped with a 570 nm filter for
colorimetric measurement.

(6) Each experimental group was done for three repetitions (n = 3).

2.7. ALP assay

Alkaline phosphatase (ALP) is an enzyme of osteoblasts, and its
expression activity is a distinct feature of osteoblast differentiation.
ALP is considered to be an important indicator for the mineralization
of bone and is a phenotypic marker for osteoblasts. Under alkaline
conditions, ALP reacts with 4-nitrophenyl phosphate (p-NPP) and
forming yellow p-nitrophenol (p-NP) [44]. The absorbance at 405 nm
can be used to determine the concentration of p-NP. The preparation
of the reagents is provided in supporting information S.2.The stan-
dard procedures of ALP assay are as follow:

(1) 100 mL of MG-63 cell suspension (1 £ 105 cells/mL) was trans-
ferred into each well of a 96-well cell culture plate. The cells
were incubated at 37 °C for 24 h in a humidified atmosphere
containing 5 % CO2.

(2) Culture medium was replaced with 100 mL of materials for the
concentration: 0 mg/mL (control group) and 1 mg/mL.

(3) Incubated cells for 3, 5, 7, and 14 days, separately.
(4) The culture medium was aspirated from the plates and the cells

were washed with PBS twice.
(5) 100 mL of the 0.1 % Triton X-100 solution was added to each

well and the plate was further incubated for 1 h at 37 °C.
(6) In a dark environment, took 50mL of cell extract and p-NP solu-

tion (0, 6.25, 12.5, 25, 50, 100 mM) to 96-well plate and added
200mL substrate buffer to each well for 1 h incubation at 37 °C.

(7) The reaction was terminated by adding 100 mL of 1 N NaOH.
(8) Used ELISA reader to acquire the absorbance at 405 nm.
(9) The calibration curves were built by the absorbance of p-NP

standard solution of 0, 6.25, 12.5, 25, 50, and 100 mM, respec-
tively. The ALP contents of sample were attained by substitut-
ing the absorbance into the calibration curve.

(10) Each experimental group was done for three repetitions (n = 3).

2.8. Cellular uptake

The amount of Mg uptake by the MG-63 cell line has been ana-
lyzed in this study. 1 £ 104 of MG-63 cells were cultured in the well
of 96-well plate with 100 mL of MEM-a containing 1 mg/mL of sam-
ples. The cells were incubated for 3 days, and the medium was
collected to measure the Mg concentration by ICP-MS. It was calcu-
lated the Mg ions of cell uptake by using the blank test and original
solution concentration.

2.9. Statistical analysis

Data represent the mean§ standard deviation for three replicates.
Statistical analysis was carried out on cellular tests using the one-way
analysis of variance (ANOVA). * represent the statistically signifi-
cantly difference between sample and control (*p < 0.05, ** p < 0.01,
*** p < 0.001).

3. Results and discussion

3.1. Characterizations of Mg@HAp-PC

To understand the influence of phosphatidylcholine on the forma-
tion of Mg@HAp crystal, we first synthesize Mg@HAp and Mg@HAp-
PC with the ratio Ca: Mg = 1: 0 and simply call these sample HAp and
HAp-PC. The aging time of these two samples was 19 h. The FTIR
spectra and the XRD patterns of HAp and HAp-PC are shown in Fig. 1.
In Fig. 1 (a), the IR peaks at 602 and 561 cm�1 are assigned to n4
vibration of the PO4

3� antisymmetric bending (O-P-O mode), which
can be found in the typical spectra of HAp [45,46]. The peak at
962 cm�1 is attributed to n1 (symmetric stretching mode) of PO4

3�,
and the peaks at 1027 and 1105 cm�1 are assigned to n3 (asymmetric
stretching vibrational mode) of PO4

3� [47�49]. The peaks at 1640
and 1650 cm�1 result from vibrations of CO3

2� [49,50]. Comparing
the spectra of HAp and HAp-PC, we can find that there are carbonyl
band at 1740 cm�1, the antisymmetric vibrations of PO2 at
1233 cm�1, and the d(CH2) scissoring vibrations at 1466 cm�1 in the
spectrum of HAp-PC [51]. Also, the signals observed between 2800
and 3100 cm�1 correspondings to the symmetric and asymmetric
stretching vibrations from the CH2 and CH3 groups [52]. The XRD pat-
terns of HAp and HAp-PC were shown in Fig. 1 (b). It indicates that
HAp synthesized in the PC system has a lower crystallinity than that
without PC. The inverted triangle in Fig. 1 (b) indicates the character-
istic peaks of HAp.

To further monitor the transformation of the Mg@HAp crystal
phase over time under the influence of magnesium ions and different
PC concentrations, the condition of Ca/Mg ratio = 5 was chosen, and
their XRD patterns are shown in Fig. 2. All the results indicated that
the presence of PC would make the crystallinity of Mg@HAp lower.
Fig. 2 (a) shows that the crystallinity of Mg@HAp reached a maximum
after 5 h of aging. Fig. 2 (b) indicated that the HAp-PC is still amor-
phous after 5 h of aging, and, eventually shows the characteristic
peak of HAp. Nonetheless, Fig. 2 (c) shows that if the amount of PC
increases to 1.5 times, the crystalline phase will not occur after 11 h
of aging. We finally choose Mg@HAp-PC for further analysis.

High-resolution TEM was performed to observe the crystal orien-
tation differences in Mg@HAp (Ca/Mg = 5) and Mg@HAp-PC (Ca/
Mg = 5).

In Fig. 3 (a-1) and (b-1), the selected area electron diffraction
(SAED) patterns of polycrystal were observed in both Mg@HAp (Ca/
Mg = 5) and Mg@HAp-PC (Ca/Mg = 5). The diffraction patterns
belonging to (2 1 1) face of HAp correspond to a diffraction angle of
XRD with Cu Ka source at 31.86°, which can be confirmed by the
results in Fig. 2 (b) as well. It is supposed that the PC provides the
confined space and inhibits the crystallization process. The crystallin-
ity is lower in the PC system than the system in absence of PC.

The dark-field images in the same areas as the SAED are shown in
Fig. 3 (a-2) and (b-2) to improve the crystalline phase's contrast. Only
Mg@HAp-PC (Ca/Mg = 5) possessed an orderly arrangement of nano-
scale crystals. These nanoscale crystals aligned to form the bundle-
like morphology with a total length around 300 nm. Literatures have
mentioned that the matrix formed by organic matters can contribute



Fig. 1. (a) FTIR spectra of HAp and HAp-PC. (b) XRD Patterns of HAp and HAp-PC.

Fig. 2. The XRD patterns of (a) Mg@HAp (Ca/Mg = 5), (b) Mg@HAp-PC (Ca/Mg = 5) and
(c) Mg@HAp-1.5PC (Ca/Mg = 5) after 5 to 11 h of aging.

44 Y.-H. Chen et al. / Journal of the Taiwan Institute of Chemical Engineers 129 (2021) 40�51
to this regular structre [53]. This arrangement is similar to the crystal
arrangement of biological bone [54,55].

The effect of different Ca/Mg ratios on Mg@HAp have also been
discussed. Solutions with three Ca/Mg ratios (x = 10, 5, 1) were cho-
sen to modulate the Mg content in Mg@HAp. The XRD patterns
shown in Fig. 4 reveal that the crystallinity will decreases when the
portion of Mg increases. This phenomenon has been reported by lit-
erature [56]. Furthermore, comparing with the Mg@HAp-PC (Ca/
Mg = 10), the corresponding peaks of Mg@HAp-PC (Ca/Mg = 5)
shifted to a higher degree, owing to the increase of Mg substitution
in Mg@HAp-PC.

In Fig. 5, the morphologies of Mg@HAp and Mg@HAp-PC with dif-
ferent Ca/Mg ratios were observed with SEM. HAp and Mg@HAp (Ca/
Mg = 10) were agglomerated needle-like particles (Fig. 5 (a), (c)).
After introducing the PC, HAp-PC and Mg@HAp-PC (Ca/Mg = 10)
become flake-like particles (Fig. 5 (b), (d)). The morphology of
Mg@HAp (Ca/Mg = 5) with and without PC are also compared in
Fig. 5 (e) and (f), where larger particles will form if PC is not added
during synthesis. Moreover, in the PC-incorporated system, the mor-
phology appears to be bundle-like, suggesting the crystal axis might
be aligned in the same direction to form a large ordered crystal. This
result is consistent with the TEM image in Fig. 3 (b-1). Significantly,
particles of HAp become columnar aggregation when the Ca/Mg ratio
is 1 no matter whether the PC is involved or not (Fig. 5 (g), (h)).

The zeta potentials under neutral pH value for materials are
shown in Fig. 6. Compared with Mg@HAp without adding PC, the
absolute value of zeta potentials after adding PC is at least twice
greater. And a greatest zeta potential value of -25.83 mV can be
observed from Mg@HAp-PC (Ca/Mg = 1). The negative zeta potentials
of the material containing PC were attributed to the fatty acid con-
tents in the PC we used. Literature also indicated that the negative
potential of HAp can promote the deposition of calcium ions, which
will participate in the formation of the extracellular matrix required
for cell attachment [57,58], Because the negative zeta potential has a
beneficial effect on attachment and proliferation for bone cells which
has been demonstrated [59,60], we believed that our Mg@HAp-PC
will be a bone material with these advantages.

To determine the amount of Ca substituted by Mg in Mg@HAp and
Mg@HAp-PC, the Ca and Mg contents for each sample were analyzed
by ICP-MS, and the results were shown in Table 3. The Mg content in
Mg@HAp-PC can be controlled from 1.44 to 10.64 %. To better



Fig. 3. The TEM images of (a) Mg@HAp (Ca/Mg = 5) and (b) Mg@HAp-PC (Ca/Mg = 5).
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evaluate the composition changes in each sample, we normalized the
product molar ratio and calculated the percentage of Ca replacement
with the Mg and Ca/Mg ratio. Therefore, it is confirmed that PC can
increase the substitution amount of Ca ions by Mg ions in Mg@HAp
when the Mg concentration is high (Ca/Mg = 1). We will also design
other experiments to explore the possible mechanisms of this phe-
nomenon.

As mentioned in the introduction chapter, it is not easy to prepare
a Mg@HAp with high Mg content in an aqueous system under physi-
ological temperature. With PC’s help, the Mg content of Mg@HAp can
be further increased. To give a better view of how Mg is incorporated
in Mg@HAp, the chemical states of magnesium and oxygen is identi-
fied with XPS (Fig. 7). The signals in the Mg2p spectra are detected on
the surfaces, indicating the presence of Mg. We further use FTIR to
analyze the functional groups in Mg@HAp and Mg@HAp-PC (Ca/
Mg = 5) (Fig. 8). The FTIR spectra are the same as in Fig. 1 (b), where
we can find the vibration modes of PO4

3� and CO3
2� in both samples.

The difference between the spectra of Mg@HAp and Mg@HAp-PC
(Ca/Mg = 5) is that the latter has an additional carbonyl band at
1740 cm�1 and the d(CH2) scissoring vibrations, which are corre-
sponding to PC. We then use this information of functional groups to
analyze the XPS spectra in Fig. 7. The chemical state of Mg@HAp and
Mg@HAp-PC (Ca/Mg = 5) derived Mg-O from carbonate (red line)
shows the peak belonged to Mg2p with Mg2+ peak around 51.9 eV
[61], which is in accordance with the results obtained from the O1s
spectra. Mg@HAp-PC has 6 % Mg binding with carbonate, less than 16
% that Mg@HAp has. Some studies indicated that carbonates replace
the phosphate ions in the crystal structure and impact its ability to
accommodate other foreign ions [62]. Therefore, this result can
explain why high Mg content in Mg@HAp-PC is not entirely attrib-
uted to carbonate. It is indirectly explained that Mg content increased
mainly by PC’s assistance instead of carbonate for the Mg@HAp-PC.

As shown in O1s spectra, it could be observed the binding energy
at 534.8 eV and 536.5 eV might be respectively assigned to PO4

3� and
adsorbed water [63�65]. Additionally, a peak observed at 532.2 eV in
Mg@HAp (Ca/Mg = 5) is attributed to the CO3

2� bond [66]. Further-
more, the binding energy of 532.1 eV and 534.4 eV may be attributed
to ester C=O and O=C-O [67], respectively, and the existence of PC is
also confirmed.

3.2. Proposed PC-assisted reaction mechanism

In this section, how PC can increase the Mg in Mg@HAp has been
investigated. When we add the solution containing Ca and Mg ions
into the round-bottom flask containing PC, the Ca and Mg in
the solution will be adsorbed on the surface of the lipid membrane
(Fig. 9 (a)). When we further add phosphate solution, Mg@HAp crys-
tals will nucleate on the lipid membrane contains Ca and Mg ions,
make it easier for Mg ions to be doped into HAp. We also did another
experiment to prove our hypothesis (Fig. 9 (b)). In this experiment,
we first added the solution containing only Ca ions to the round-bot-
tom flask containing PC and waited for 30 min, waiting for the lipid
membrane to saturate with Ca ions before adding the solution of Mg
ions. In this way, we expected that Mg ions cannot easily participate
the nucleation process and thus have a lower concentration in
Mg@HAp. The results obtained here also indicate that for the



ig. 4. The XRD patterns of (a)Mg@HAp (Ca/Mg=1, 5, 10) (b)Mg@HAp-PC (Ca/Mg = 1, 5, 10).

Table 3
The ICP-MS results of Mg@HAp and Mg@HAp-PC.

Sample Mg (wt %) Ca replaced by Mg Mg/
(Mg+Ca)(%)

Ca/Mg (-)

Mg@HAp (Ca/Mg = 10) 1.48 8.02 11.48
Mg@HAp-PC (Ca/
Mg = 10)

1.44 8.77 10.40

Mg@HAp (Ca/Mg = 5) 2.48 13.37 6.48
Mg@HAp-PC (Ca/Mg = 5) 2.58 16.08 5.22
Mg@HAp (Ca/Mg = 1) 8.36 41.98 1.38
Mg@HAp-PC (Ca/Mg = 1) 10.64 51.24 0.95
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Fig. 5. SEM images of (a) HAp, (b) HAp-PC, (c) Mg@HAp (Ca/Mg = 10), (d) Mg@HAp-PC (Ca/Mg = 10), (e) Mg@HAp (Ca/Mg = 5), (f) Mg@HAp-PC (Ca/Mg = 5), (g) Mg@HAp (Ca/Mg = 1), (h)
Mg@HAp-PC (Ca/Mg = 1).

Fig. 6. Zeta potentials of Mg@HAp, Mg@HAp-PC with various of Ca/Mg ratio and PC under neutral pH value.
condition of Ca-occupied PC, the amount of Ca replacement with
Mgindeeddecreasesto14.28%(Table4).Whichinlinewithourexpecta-
tions.
3.3. Degradation test

The weight change for various periods was examined to deter-
mine the degradation behavior of HAp and HAp-PC powder (Fig. 10).
The degradation rate of samples could be controlled from 9.43 to
28.06 % in 4 weeks of immersion in PBS. For the same ratio of Ca to
Mg, the addition of PC significantly increases the degradation rate of
the HAp. A higher concentration of Mg in the HAp also increases the
degradation rate. The main effect of the increase in degradation rate
is the Mg content in HAp, which is consistent with the early study
[20,29]. Beside, the controllable degradation rate maybe match the
rate of new bone formation.



Fig. 7. XPS spectra of Mg@HAp and Mg@HAp-PC (Ca/Mg = 5).

Fig. 8. FTIR analysis of Mg@HAp and Mg@HAp-PC (Ca/Mg = 5).

Fig. 9. (a) Nucleation of Mg@HAp (Ca/Mg = 5) on lipid membrane. (b) M
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3.4. In vitro test

Various concentrations of Mg@HAp and Mg@HAp-PC were added
into the culture medium of the MG-63 cell line to evaluate the bio-
compatibility. The MTT assay results of MG-63 cells in 1 day are
shown in Fig. 11. All the materials have good biocompatibility that
the cell viability is above 80% for different concentrations after 1 day
of incubation. Especially for HAp-PC (Ca/Mg = 1) in 10 mg/mL, the
cell viability can be as high as 221%. Although the HAp-PC (Ca/
Mg = 1) in 10 mg/mL has the best effect for cell viability, the other
samples are the opposite effect. Therefore, we chose 1 mg/mL as the
appropriate concentration of cell proliferation tests in the 3, 5, 7, and
14 days of culture (Fig. 12). The result shows that the HAp-PC has
higher cell viability compared with HAp.

Moreover, the cell viability of all materials is outstandingly differ-
ent from the control group after 2 weeks. There are significant differ-
ences between HAp-PC (Ca/Mg = 5) and HAp-PC (Ca/Mg = 1) after the
odified process for preparing Mg@HAp-Ca occupied PC (Ca/Mg = 5).



Table 4
ICP-MS results of Mg@HAp-PC synthesized by different process.

Sample ICP
Ca replacement with Mg Mg/(Mg
+Ca) (%)

Ca/Mg (-)

Mg@HAp-PC (Ca/Mg = 5) 16.08 5.22
Mg@HAp-Ca occupied PC (Ca/

Mg = 5)
14.28 6.00
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5 days of culture. It indicates that high Mg content in HAp and the
addition of PC are beneficial to cellular proliferation.

ALP activity is often used to demonstrate the differentiation of
bone cells. ALP activity increases when bone cells undergo the miner-
alization process. The ALP concentrations of HAp and Mg@HAp-PC
after 3, 5, 7, and 14 days are shown in Fig. 13. It shows that the ALP
concentrations of all the groups with added materials are higher than
that of the control group. In particular, HAp-PC (Ca / Mg = 1) was 97%
higher than the control main after 14 days. It indicated that
Fig. 10. Weight losses of Mg@HAp and Mg@HAp-PC after different times of degradation.

Fig. 11. Cytotoxicity of various concentrations of Mg@HAp and Mg@HAp-PC after 1 day of culture.
Mg@HAp-PC can promote the differentiation of osteoblast-like cell
MG-63 and help it enter the stage of mineralization.
3.5. Quantitative analysis of Mg ions release

It has been demonstrated that Mg ions can increase adhesion,
growth, and ALP activity of bone cell.[19] We analyze the release con-
centration from the material and cellular uptake of magnesium ion
after three days to investigate the causes of increased cell prolifera-
tion and differentiation. Because the best bioactivity effect of the ratio
of Ca to Mg is 1, we chose this ratio to investigate. From Table 5, we
can indicate the released 0.89 wt% of Mg ions for HAp-PC (Ca/Mg = 1)
in 3 days, which is higher than 0.74 wt% of HAp (Ca/Mg = 1). The Mg
ions uptaken by cells are 0.12 and 0.14 wt% for HAp and HAp-PC (Ca/
Mg = 1). Consequently, it showed that when the Mg ions release and
the concentration increased, the viability and ALP concentration
increased. This phenomenon, which benefits cell proliferation and
differentiation, is relative to the concentration of Mg ion release.



Fig. 13. ALP assay of MG-63 cells with HAp and Mg@HAp-PC.

Table 5
The Mg ions released frommaterials and the amount uptaken by cells in 3 days.

Sample Mg (wt %) Release of Mg2+ (wt %) Mg2+ uptaked by cells (wt %) Viability (% of control) Viability (% of control)

Mg@HAp (Ca/Mg) = 1 8.36 0.74 § 0.04 0.12 § 0.05 107.92 170.75
Mg@HAp-PC (Ca/Mg) = 1 10.64 0.89 § 0.06 0.14 § 0.09 127.53 222.55
Data represent the mean SD for three replicates

Fig. 12. Proliferation assay of MG-63 cells with HAp and Mg@HAp-PC.
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4. Conclusion

We had successfully synthesized Mg@HAp and Mg@HAp-PC with
the Ca/Mg ratio 10, 5, and 1. The addition of the PC affects the crystal-
linity and the time of the crystallization of HAp. Moreover, it is indi-
cated that the formation of the orderly crystal alignment is attributed
to the PC organic matrix's presence. PC increases the loading amount
of Mg and enables us to control the Mg content in Mg@HAp-PC from
1.44 to 10.64 wt%. Increasing the Mg content in HAp mainly by the
assistance of PC instead of carbonate has also been confirmed. The
proposed mechanism indicates that PC provides a nucleation site for
Mg@HAp and helps Mg ions to enter the crystal of Mg@HAp-PC. The
degradation rate for Mg@HAp could be controlled in a range from
9.71 to 28.06 % in 4 weeks. The degradation rate's primary factor is
the Mg content in Mg@HAp; increasing Mg content resulted in lower
crystallinity, higher degradation rate. For in vitro test, there is
0.89 wt% Mg ions release from HAp-PC (Ca/Mg = 1). After three days
of culture, the cellular viability reached 127 % and the ALP concentra-
tion reached 222%. The presence of high Mg and the addition of PC in
HAp are beneficial to cellular proliferation and differentiation, and
the release of Mg ions is a significant factor for promotion. Consider
all, this work reveals a novel efficacy for PC applied in Mg@HAp, pro-
viding a promising biomaterial in orthopedic applications).
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